Bases: BaseEstimator
A dummy model that predict the constant value all the time
Source code in stemflow/model/dummy_model.py
| class dummy_model1(BaseEstimator):
"""A dummy model that predict the constant value all the time"""
def __init__(self, the_value: Union[float, int]):
"""Make dummy model1 class
Args:
the_value: The dummy value
"""
self.the_value = float(the_value)
pass
def fit(self, X_train, y_train):
"""Fake fit"""
pass
def predict(self, X_test):
"""Fake predict"""
return np.array([self.the_value] * X_test.shape[0])
def predict_proba(self, X_test, **additional_parameters_for_base_model):
"""Fake predict_proba"""
if self.the_value == 0:
return np.array([[1, 0]] * X_test.shape[0])
elif self.the_value == 1:
return np.array([[0, 1]] * X_test.shape[0])
|
__init__(the_value)
Make dummy model1 class
Parameters:
-
the_value
(Union[float, int]
)
–
Source code in stemflow/model/dummy_model.py
| def __init__(self, the_value: Union[float, int]):
"""Make dummy model1 class
Args:
the_value: The dummy value
"""
self.the_value = float(the_value)
pass
|
fit(X_train, y_train)
Fake fit
Source code in stemflow/model/dummy_model.py
| def fit(self, X_train, y_train):
"""Fake fit"""
pass
|
predict(X_test)
Fake predict
Source code in stemflow/model/dummy_model.py
| def predict(self, X_test):
"""Fake predict"""
return np.array([self.the_value] * X_test.shape[0])
|
predict_proba(X_test, **additional_parameters_for_base_model)
Fake predict_proba
Source code in stemflow/model/dummy_model.py
| def predict_proba(self, X_test, **additional_parameters_for_base_model):
"""Fake predict_proba"""
if self.the_value == 0:
return np.array([[1, 0]] * X_test.shape[0])
elif self.the_value == 1:
return np.array([[0, 1]] * X_test.shape[0])
|