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Project Overview

How should | charge my Airbnb listing? Owners typically consider several
factors including prices around the neighborhood, the configuration of the
property, and the cost of owning and listing the unit. While some systems
have provided solutions to a reasonable pricing recommendation, they
are either less comprehensive in features input or did not mention the
“competitiveness” at that price. This project aims to create a web
application to allow users to figure out the optimal price point that is
competitive with the market while not undervaluing the property for new
property owners looking to list on Airbnb. Besides that, we aim to provide
users with further helpful information about why they should charge at
this range and what additional features they can include improving their
pricing power.
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Data Sources

« Airbnb Listings data in Los Angeles
(http://insideairbnb.com/get-the-data/)
*  “Amenity Universe” dataset

* COCO128 dataset (https://github.com/ultralytics/yolov5)
* RealEstate dataset (https://www.redfin.com/news/data-center/)

Key methodology

Image pipeline

* CNN: extracting price related image features

* Aesthetic features: brightness, contrast, etc.

* Object detection: common daily object identified
* Rule of third: structural values in photography

Amenity pipeline

* Binary encoding of Airbnb standard amenities

* Bathrooms, bedrooms, property types & counts
encoding.

Location pipeline

* Summary of neighborhood average prices with
similar conditions

* Real estate pricing by zipcode

¢ Count & distance of facilities in the
neighborhood

* Distance to the famous tourist attractions

Description pipeline

* Named entities recognition form host
descriptions

*  Whole Sentence embedding using transformers

Modeling

* Five quantile regression models with LightGBM
¢ Qutlier removal and dimensionality reduction
¢ Fine-tuning using GridSearchCV

Interpretation

* Feature importance interpretation with SHAP
package beewarm plot

* prediction result explanation using waterfall plot

* Learning curve, sensitivity analysis and failure
analysis with matplotlib & searbon presentation

Application

*  Web application: Streamlit

Results Feature importances

Overall good model fitting with R2 around 0.64 for
the 0.5 quantile model. Web application generate
prediction report within 10 seconds.

As “hardware”, House property, amenities
and location determined the most
percentages of price variance, with
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Project Resources:

Web application: http://18.205.39.151:8502/my_app

GitHub: https://github.com/foye501/Capstone_ GMT89

Report: https://docs.google.com/document/d/161fEvOt40ps9SGSNPMAXZgnTigGPNvgPrR8gCyeM7x0,
Video explanation: https://www.youtube.com/playlist?list=PL-1h8lEqwhvFGjcMphHh4x3e400W4smun
Medium
blog: https:
ew-airbnb-hosts-a33ffa718fbb
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