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Introduction 
 
Background 
 
In this project, our goal is to predict, cluster, and compare different bird migration patterns. 
 
Throughout the years, millions of birds were observed and recorded across the world by birders at eBird 
citizen science project. However, our knowledge is limited regarding the detailed migration pattern of birds. 
On the one hand, the global climate and land-use change is threatening birds, and on the other hand the spatial-
temporal nature of bird migration makes it challenging to predict movement. Therefore, there is an urgency to 
model fine-scale bird migration and distribution patterns across the continents, both for understanding and 
conservation purposes. In this project, we focused on fitting the current migration pattern, so that we could 
predict birds' presence or not in regions where there is no observation data available.  
 
Goal and purpose 
 
Through this project, we could: 
 
1) Predict the presence or absence of a species at a location at a time, even in a region where there is no 
observation data available. This will provide a comprehensive graph of the whole-year-round bird distribution 
pattern. 
 
2) By taking spatial-temporal connectivity into account, we could depict the migration route of certain species, 
which is significant in understanding the biological process and conservation. 
 
3) The fitted model could further be used to project potential occurrence change under future land-use and 
climate scenarios to better quantify the impact of global change on migratory birds. 
 
Methods & results summary 
For supervised learning, we compared the metrics for 56 different model selection, including five baseline 
models and one advanced ensemble model. We showed that the gridding-ensemble method (here after, 
AdaSTEM model) is generally much better than single baseline models. Prediction difficulty for different 
species is different, with House Wren having the highest AUC score of 0.8646 in AdaSTEM model, and 
Mallard with the lowest of 0.8615. 
 
In the unsupervised learning part, we first calculated the geographical center of distribution for each calendar 
week/month, and generated a "migration route" for the species. Then we applied different clustering strategies 
to depict similarity and dissimilarity of species migration pattern. We found that species in closer evolutionary 
relationships or with similar tropical niches migrate together. For example, cluster 1 mainly consists of 
carnivorous predators, while cluster 2 mainly consists of omnivorous and vegetarian preys. 
 
Related work 
 
1) Our modeling framework will largely come from a published academic paper (Fink et al., 2020). In short, 
this paper use: 
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● Adaptive gridding method that takes data abundance into consideration. More data-abundant location 
allows finer gridding.  

● Two-step zero inflated model to model count data. 
 
2) Since the nature of our supervised learning task is species distribution modeling, (SDM) there is an example 
of SDM provided by sklearn (reference [2]): They considered the problem as density estimation and applied a 
one-class SVM model. 
 
In our case, we treat the problem as a binary classification problem because we have labels for both present 
and absent. 
 
3) Hubalek (2005) investigated the co-fluctuation among bird species in their migration timing. This work 
philosophically resembles our unsupervised learning task. Their findings are: 

● All short distance migrants with the European winger range clustered together. 
● long-distance migrants, who winter in the African range, formed six other smaller clusters. 
● They calculated the Pearson correlation of spring migration and made a UPGMA cluster analysis. 

 
 
 
Data Source 

● eBird citizen science data (reference [5]) 
o Time range: year 2018. 
o Originally 4,300,429 observations. 487,293 after subsampling. 
o Important variables: 

▪ Time of the day when observation started. 
▪ Date 
▪ Number of observers 
▪ Observation protocol type (stationary or traveling) 
▪ Location (location name and longitude, latitude) 
▪ Traveling distance 
▪ The name of each species observed and their count. 

o eBird data were pre-filtered based on following rules: 
▪ Observation type should be traveling or stationary. 
▪ Only checklists with more than 5 species observed are included. 
▪ The travel distance of observer should be less than 3 km (to make sure the high 

spatial precision and land-use continuity) 
▪ The observation time duration should be more than 5 minutes. 

● ESA CCI global land use data (reference [7]) 
o Time range: year 2018. 
o Important variables include: Fraction of land use, landscape index (maximum patch size, 

patch density, etc.) of different land use (urban, cropland, shrubland, forest, water, etc.) 
● WorldClim monthly climate data (reference [8]) 

o Time range: year 2018. 
o 19 Bioclimatic variables. For example, precipitation of the wettest quarter, temperature of the 

warmest month. 
o Monthly raw climate data: maximum temperature (tmax), minimum temperature (tmin), 

precipitation (prec). 
● Elevation and slope data (reference [6]) 

o Mean and standard deviation of elevation, slope, eastness, northness. 
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Feature engineering 
 
 
1. Data extraction 

● We first extracted longitude and latitude data for each eBird checklist. 
● We load environmental data based on their format. For example, using the gdal package (GDAL/OGR 

contributors, 2022) for geo-tif format, and netCDF4 package (reference [10])for NetCDF format data. 
● Based on the grid length of the environmental dataset, extract the data at corresponding locations 

using NumPy operation. 
 
2. Data manipulation 

● For missing values in sampling effort parameters, we use -1 to fill the parameters. This is because the 
most important model in our supervised learning part is tree-based, therefore robust to missing values. 

● For supervised learning, we down sampled the data volume so that each 1*1*1 longitude-latitude-
day_of_year grid has a maximum of 500 records. This is for releasing the burden of computational 
power, and also reducing the biased spatial distribution of checklists. 

● For the unsupervised learning part, we calculated the geographical center of distribution each day of 
each species, and used these features for down-stream clustering. 

 
3. Final features selected:  

● Features consisted of five parts: 1) climate variables; 2) sampling effort variables (observation 
duration, number of observers, etc); 3) Temporal variables (day of year, etc); 4) topography; 5) 
landscape variables. Please refer to the appendix for a complete variables list. 

 
 
 

 
Figure 1. Visualization of species-level year-round migration route for 27 randomly chosen species. The 
center of geographical distribution is calculated for each week, and a 10-week-window moving average is 
applied to smooth the time-series. 
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Supervised learning 
 
Methods description 
 
The extracted data are ready to be fed into the machine learning workflow. We first did a 80-20 train-test-split 
to partition the data. While exploring the model selections, we realized that predicting bird occurrence is more 
than a linear problem, therefore we include only one linear model to ensure that the rest of the baseline model 
can be competitive to AdaSTEM model. Five basic models were then constructed as baseline models, namely 
LogisticRegression, GradientBoostingCliassfier, DecisionTreeClassifier, XGBClassifier and 
RandomForestClassifier. We chose these five models because they represent a wide range of model categories, 
from linear to non-liner tree-based models, and from single tree model to ensembles and optimized loss 
functions. Finally, we also include the AdaSTEM model, which uses a grid-train-combine strategy (Figure 2), 
and we choose XGBClassifier as the "base model" for each grid.  
 
We fine-tuned the grid size hyperparameters by testing the scores for five grid size choices: (2, 5), (4, 10), (8, 
20), (16, 40), (24, 60), and 10 ensemble fold choices, ranging from 1 to 10. Taking four evaluation metrics into 
account - average precision, roc-auc score, f1 score and cohen kappa score - we discovered that the best 
parameters (that is, at least have 2 metrics ranked 1st in all parameter sets), and therefore the grid size is set to 
8 (minimum grid size) and 20 (maximum grid size) (Figure 5). The ensemble fold was also fine-tuned and the 
value 8 was chosen for it considering that all the metrics did not considerably increase with higher ensemble 
fold. 
 
All variables used in the supervised learning are listed in the appendix. These include: 1) climate variables; 2) 
sampling effort variables (observation duration, number of observers, etc); 3) Temporal variables (day of year, 
etc); 4) topography; 5) landscape variables. 
 

 
 
 
 
 
Figure 2. QuadTree implementation 
The figure illustrates how the QuadTree gridding algorithm 
is implemented. There are 10 ensembles in this chart, 
presented by different line colors. Regions where data are 
more abundant (shown in blue dots), the grid can be more 
densely structured. Final result takes the average of all 
ensembles. 
 
 
 
 
 

 
Supervised Evaluation 
 
overall results 
We chose four evaluation metrics for the hyperparameters tuning and sensitivity analysis: average precision, 
roc-auc score, f1 score and cohen kappa score. For comparing baseline model and AdaSTEM model, we chose 
to use ROC-AUC score for the simplicity and its authenticity and popularity in classifier evaluation.  
 
As a result, the linear LogisticRegression model performed the worst and AdaSTEM performed the best in all 
six species (Figure 3, Table 1). The average AUC score for AdaSTEM model reached 0.8633 (std 0.001) 



Bird migration project – Chen - Lawrence - 5 
  

across all six species, showing a superior and stable performance. Meanwhile the performance for 
Randomforest and XGBClassifier is also valuable in species like Black-capped Chickadee. 
 
 

 
Figure 3. ROC-AUC score for 6 models in 6 different species. All models were run under 5-fold cross 
validation except for the AdaSTEM model. The standard deviations are too small to enable a visible error bar 
(see Table 1). 
 
 
Table 1. ROC-AUC score for 6 models in 6 different species. Values in quotes represent the standard 
deviation of 5-fold cross validation value. 

Species AdaSTEM DecisionTree GradientBoosting LogisticRegressio
n 

RandomForest XGBoost 

American Crow 0.864 0.764 (0.001) 0.672 (0.001) 0.63 (0.002) 0.794 (0.002) 0.764 (0.002) 

American Robin 0.863 0.759 (0.001) 0.714 (0.002) 0.643 (0.002) 0.795 (0.01) 0.768 (0.002) 

Black-capped 
Chickadee 

0.862 0.821 (0.002) 0.767 (0.002) 0.693 (0.002) 0.858 (0.001) 0.838 (0.002) 

House Wren 0.865 0.764 (0.002) 0.574 (0.002) 0.539 (0.002) 0.770 (0.002) 0.682 (0.002) 

Mallard 0.862 0.762 (0.003) 0.614 (0.002) 0.561 (0.003) 0.780 (0.002) 0.720 (0.002) 

Turkey Vulture 0.863 0.736 (0.002) 0.572 (0.002) 0.547 (0.001) 0.743 (0.002) 0.675 (0.002) 

 
 
Feature importance analysis 
 
Because of the self-defined format of AdaSTEM model, we conduct feature importance analysis by manually 
permutating each feature. We use AUC score as the evaluation metric, and feature importance is defined as  
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where Ik is the importance score for the selected feature k. AUCcomplete is the AUC score on the test set with no 
features permutated, and AUCk-permutated is the score where only feature k is permutated. Permutation-

evaluations were operated five times, and the average is taken. 
 
Result shows that DOY (day of year) is significantly more important than the second-ranked feature (Figure 4). 
A randomized DOY feature will reduce the model performance for ~3.3% (measured in AUC). This impact is 
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not as significant as anticipated. However, it makes sense because DOY is not the only feature to indicate 
seasonal change. Other variables like precipitation, min temperature, max temperature of the month, could also 
indicate seasons. 
 
Besides DOY, elevation, slope, climates (those "bios") and other environmental factors play a major role in the 
model. The result makes sense because birds were indicated by climate and other environments to decide their 
occurrence and movement. Duration minutes, one of the sampling effort parameters also shows significance in 
the model. 
 

 
Figure 4. Feature importance calculated by permutation analysis with 5 repeats. Only top 20 features are 
shown. Red bars represent the standard deviation of importance across repeats. 
 
 
Sensitivity & learning curve analysis 
Sensitivity analysis was conducted in the same manner as hyperparameter tunings. We explore the influence of 
changing data volume (learning curve), ensemble fold and grid size (in the AdaSTEM model) to the model 
performance (Figure 5). Overall, our AdaSTEM model is less sensitive to hyperparameters or data volume for 
training. In the worst case of the combination, the model will still reach an AUC score of ~ 0.8, which shows 
the robustness of our model to training data volume or parameters. 

 
 
Figure 5. Sensitivity, 
learning curve and fine-
tuning. The four plots on 
the left show the 
relationship between 
evaluation metrics, 
ensemble fold and data 
volume. The four plots 
on the right show the 
relationship between grid 
size, ensemble fold and 
evaluation metrics. The 
redder the higher scores. 
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Tradeoffs demonstration 
 
There are multiple tradeoffs in the model training and evaluation stage. One example is that while increasing 
ensemble fold will almost definitely increase the model performance, the computational cost is also higher. We 
found a balance between training ensemble fold and computational power, that an 8-ensemble model performs 
good enough. On the other hand, higher data volume will also increase the training cost, but we suggest using 
the full dataset because we conclude that the score did not reach a plateau through learning curve analysis. 
 
 
Failure Analysis 
Because of the format of the AdaSTEM model, we conducted wrong-prediction visualization and t-test for 
features that belong to wrong-right prediction, instead of passing the model to the SHAP package (Lundberg & 
Lee, 2017). Figure 6 shows the kernel density map for correctly predicted records (green) and wrong 
prediction records (red). While correct predictions are distributed across the Americas continent and showing 
highest density around the Caribbean Sea, the wrong predictions are mainly in the US, with some high-density 
regions. This result is reasonable because the US has the highest data volume, and it's likely to mis-catch some 
records by using a single model. We further looked into the feature distribution of these two classes to see if 
the wrongly predicted records are outliers (Supplementary Table 2). We found statistically significant 
differences between these two classes, with the wrong class being lower in Bio3 (Isothermality), Bio11 (Mean 
Temperature of Coldest Quarter), slope, Bio9 (Mean Temperature of Driest Quarter), etc. It indicates that those 
wrongly predicted records are outliers in temperatures, with lower temperature overall. Besides the 
environment, the "wrong" class has also significantly lower "duration minutes", which means the sampling 
duration is lower in these records (for example, 5 min observation vs. 100 min). This is also reasonable 
considering the variability and occasionality in short-term observation. 
 

 
 
 
Figure 6. Kernel density map 
for correct and wrong prediction 
The green (left) density plot 
shows the distribution of 
correctly predicted records, 
while the red (right) one shows 
wrong predictions. 
 
 
 
 

 
For specific examples, we randomly select three records that were mis-classified.  

● For the first one, the failure is likely due to the missing of all climate variables. This location is 
probably on the sea or in a remote area where the climate data is not available. In the feature 
importance analysis, we showed that climate is important indicators, and thus the failure is reasonable. 
Further trimming could remove records where the climate is missing. 

● For the second failure, the duration minutes is 12 min, which is probably quite short, resulting in 
undetectability of the species. This situation is expected. When doing formal prediction, we will 
generate prediction sets with all duration minutes standardized as 60 min, to measure "the likelihood 
of one expert traveling one km in 60 min and observing this bird". 

● For the third case, all variables seem to be falling in reasonable range, except that there is only one 
land use type: cropland. One explanation for the failure is that the resolution of land use data is not 
enough (when zooming in, there could be other patches like shrubs and trees). This could be improved 
by using higher resolution data. The second explanation is that there is occasionality in observation, 
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especially in citizen science data. This kind of error grows from the data nature and will be hard to 
avoid. 

 
 
Unsupervised learning 
Methods description 
 
Unsupervised learning methods were used to attempt to cluster bird species into comparable groupings. 
Because the eBird dataset consists of a set of individual observations of species at locations and times, the 
observations must be aggregated into individual species features that adequately capture both the spatial and 
temporal features of the distribution of observations. To do this, two different feature representations were 
evaluated for spatial aggregation. For both methods, a week-long time interval was used for temporal 
aggregation. The representations were also evaluated using a month-long time interval for temporal 
aggregation, but it was found that the more precise week-long interval provided a better result. There were a 
total of 101 species clustered. 
 
Two clustering methods were compared to determine their effectiveness at grouping similar species. The first 
used was the K-means clustering method. This was selected for baselining our primary chosen method against. 
The second method chosen was an agglomerative method. This was chosen as the main method of grouping 
species due to its potential likeness to genetic species differences. The hypothesis was that species with close 
genetic similarity may be within close proximity within the clustering. Evaluation of the genetic difference 
between species was not within the scope of this project, but that was the driving interest in selecting this 
clustering method and may be one area of future work. The only hyperparameter varied for each of the two 
methods applied was the number of clusters produced as the output when comparing against the ground truth. 
This hyperparameter was set equal to the number of clusters in the underlying ground truth being compared 
against. 
 
The first feature representation used a simpler min-mean-max geographic aggregation to determine the spatial 
boundaries of each species distribution at different time windows. By aggregating on a weekly temporal basis, 
this produced three columns for the species latitude bounds and three columns for the species longitude bounds 
for each week, producing a total of 312 features per species in the final representation.  
 
The second feature representation applied an initial stage of spatial clustering to pull out regions-of-interest 
(ROIs) from the observation data. The DBSCAN spatial clustering algorithm was used to produce these ROIs 
due to its ability to differentiate clusters of variable size based on density. This output tended to produce 
distinct clusters around regions that have high density, such as cities. In the case of small islands, it tends to 
pull out the entire island as a distinct cluster. The set of clusters found are shown imposed over a section of 
north America for visualization purposes in Figure 7 below. The polygons were generated by calculating the 
convex hull over the set of observations within each cluster. 

 
 
 
 
Figure 7. Regions-of-Interest 
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The parameters used for DBSCAN were an epsilon of 0.25 and a min_samples of 100. This clustering 
produced a total of 531 ROIs covering both North and South America. These parameters were hand selected to 
produce clusters that visually achieved a decent level of spatial granularity, while still not being overly 
numerous. The final feature vector consisted of zeroes and ones per species where a column represented 
whether a given species was present in one of the ROIs during a given week of the year. These methods 
produced a total of 27,612 features per species.  
 
 

 
Figure 8.  Hierarchical clustering based on ROI feature 
representation. 
 
Figure 8 shows a dendrogram of the output of the 
agglomerative clustering approach based on the ROI feature 
representation. It can generally be found to group the species 
into two large clusters, one of which mostly contains raptors 
and other predators, while the other contains mostly 
herbivores and omnivores. 
 

 
 

Figure 9. Species similarity based on ROI feature 
representation. 

 
Figure 9 provides one other mechanism to visualize the species similarity. The heatmap shows the cosine 
similarity between the ROI-based features for each species. The two large clusters found above can generally 
be seen in this heatmap, with the upper-left corner containing a large set of similar species, and the lower-right 
corner containing a smaller but still similar species. 
 
Both of these visualizations were also computed for the min-mean-max feature representation, but were 
omitted for brevity. 
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Unsupervised evaluation 
 
Several combinations of feature representations, clustering methods, and ground truth clusterings were 
evaluated to determine which was the most effective set to describe similarity between species using this 
dataset.  
 
Three sets of ground truth clusterings were used to evaluate the clusters. These were obtained from species 
taxonomy data. The first ground truth used was a simplified trophic level, which grouped birds into two 
groups: herbivores and omnivores against all other predators. The second ground truth used was the species 
order, which provided a total of 14 clusters. The third ground truth used was the species family, which 
provided a total of 39 clusters. Number of clusters output from each method was chosen based on the true 
number of clusters contained in the taxonomic category being compared to. 
 
The adjusted mutual information score was used to compare clustering methods, feature representations, and 
ground truth classifications. This metric captures the percentage of information found in the clustering when 
compared to a ground truth that cannot be accounted for by random chance. It is invariant to the number of 
clusters being output by a method. This is in contrast to the normalized mutual information score, which tends 
to naturally increase as the number of clusters output increases. Because we were using a variable number of 
clusters to compare against each ground truth, we opted for the adjusted mutual information score to provide a 
better comparison. 
 

   

Figure 10. Clustering adjusted mutual information score visualization 
 
Table 2. Adjusted mutual information scores 

Taxonomy Category Feature Representation Agglomerative K-means 

Trophic Level 
(n_clusters = 2) 

Min-mean-max 0.132713 0.090471 

ROI 0.304079 0.200867 

Order  
(n_clusters = 14) 

Min-mean-max 0.119847 0.131803 

ROI 0.209000 0.197381 

Family 
(n_clusters = 39) 

Min-mean-max 0.066469 0.099980 

ROI 0.319260 0.333166 

 
Figure 10 visually shows the results of comparison between each feature representation, clustering method, 
and ground truth clustering. Table 2 contains the numeric values for the adjusted mutual information scores at 
each level. These results find that the ROI-based feature representation universally fares better than the min-
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mean-max geographic aggregation representation. When compared at ground truth with a lower number of 
clusters, the agglomerative clustering outperforms the K-means clustering. When the number of clusters 
contained in the ground truth increases, the K-means clustering tends to edge out the agglomerative clustering. 
The best performance among the combinations compared is the K-means clustering, using the ROI-based 
feature representation, when compared against species family as the ground truth. Although the difference 
between the hierarchical and K-means clustering with n_clusters equal to 39 and the ROI-based feature 
representation was marginal. 
 
A sensitivity analysis can be done to find the effect of choices made in calculating the ROI-based feature 
representation. For temporal aggregation, the time period was varied between using week of the year and 
month of the year. For spatial aggregation, the min_samples parameter of DBSCAN was varied, where a 
smaller number produces a higher number of clusters, and a higher number filters out smaller ROIs. In other 
words, it raises the threshold of points necessary for something to be considered an ROI. 
 
Table 3. Spatial-temporal aggregation sensitivity analysis 

Agglomerative clustering 
Family ground truth (n_clusters=39) 

Spatial aggregation (min_samples) Effect 

25 (947 ROIs) 100 (531 ROIs) 

Temporal 
aggregation 

Week 0.291706 0.319260 0.027554 

Month 0.242013 0.241964 -0.000049 

Effect -0.049693 -0.077296 -0.027603 

Table 3 contains the adjusted mutual information score produced by the agglomerative clustering method and 
the species family ground truth when varying the time period for temporal aggregation between a week and a 
month and the min_samples parameter for spatial aggregation between 25 and 100. It was found that varying 
the parameter for temporal aggregation has a much more significant effect on the output of the model, whereas 
varying the spatial aggregation parameter has a near-zero effect, but is slightly more pronounced when using 
weekly temporal aggregation. A more fine grained temporal aggregation while prioritizing fewer ROIs in 
spatial aggregation produced the highest scoring result. 
 
 
 
 
Discussion 
 
Supervised methods 
 
Understanding the driver of bird migration and accurately predicting migration patterns has been an essential 
goal in ecology. In this project, with the help of a citizen science database, remote sensing data, and data 
science methodologies, we successfully explored the important features in bird migration and built a delicate 
model to predict the whole-year-round spectacular movement. By comparing 6 models with different 
underlying mechanisms and philosophy, we verified that the AdaSTEM (grid-train-combine) model, which 
uses spatial-temporal gridding algorithm performed the best, followed by RandomForest and XGBClassifier. 
With an AUC score >0.8 in all the six examined species, our model shows robustness to the grid size and 
ensemble fold hyperparameters. 
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Our feature importance analysis revealed the importance of DOY (day of year), as a proxy for photoperiod, to 
bird migration. Besides, climate also shows a critical impact on the pattern. These findings are aligned with our 
prior knowledge that migration is genetically controlled by photoperiod and fine-tuned by the climate of the 
year. For sampling effort parameters, duration minutes is the most important one, which deserves additional 
attention when building a citizen science project. 
 
One challenge we faced is the computational cost of the AdaSTEM model. It's difficult to run a 100-ensemble 
AdaSTEM model because it will cost 100 times more than usual, let alone doing sensitivity analysis on it. 
While the AdaSTEM model could be computationally costly, we figured out the best grid-size and ensemble 
fold hyperparameters to strike a balance between computational cost and model performance, making the 
model more scalable and applicable. Luckily, the AUC score of the model reached a plateau at 8-ensemble, 
which means we have saved 90% of the expected power compared to the 100-ensemble AdaSTEM model in 
the original paper. Meanwhile, by conducting failure analysis, we identified four types of potential error: 1) 
missing value in significant features (e.g., climate); 2) deficient sampling effort (e.g., short-term observation); 
3) lack of spatial resolution in some features (e.g., 500m land use data) and 4) randomness in observational 
data, especially in citizen science program. Future research could head on fine-filtering missing value and 
increasing the quality of environmental data. 
 
However, we also recognized that our 8-ensemble AdaSTEM model cost 8 times more computational time 
than other simple models both in training and prediction, which should be considered carefully before adapting 
them. Future work could include parallel implementation of ensembles, since they are completely independent. 
Currently, the 8-ensemble model is still efficient enough, but not guaranteed in the ongoing data-booming 
world. 
 
 
Unsupervised methods 
 
The initial method chosen was the ROI-based feature representation with the agglomerative clustering method. 
Both the min-mean-max feature representation and K-means clustering method were later introduced as 
baselines to compare the primary methods against. Most of our effort and tuning went into refining the ROI-
based feature representation. This included a clustering method all its own, which required substantial effort to 
produce a feature representation that adequately captured the spatial-temporal qualities of the observation data 
in as concise a way as possible. It was believed based on past personal experience in other geospatial analytic 
tasks that DBSCAN would be an appropriate choice and the ROI-based feature representation would deliver 
good results. We were correct in thinking that the ROI-based spatial aggregation method provided a better 
representation than the baseline min-mean-max method, but the agglomerative clustering method did not 
always outperform K-means. This was a relatively late finding in the course of the project, and further work 
would focus more on K-means clustering method to determine its strengths and weaknesses when working 
with a larger number of clusters. The other opportunity that did not fall in the scope of the work but would be 
available in the future would be using genetic species similarity to compare our clustering results against. 
 
 
 
Ethical Considerations 
 
In the supervised learning part, the data and training have less possibility to involve ethical consideration, but 
there are some concerns in implementing the data: 1) The model could be used to predict patterns under 
current climate situations. However, if our model overestimates the range of species, it could provide 
misleading information that this species is under healthy circumstances and face no threats, which could be 
wrong. As a result, NGO could pull attention away from this species, resulting in species population decline. 
2) This model could also be used for projecting migration patterns under future climate, and like the case in 
(1), could result in excessive attention or deficient attention toward species. 
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In the unsupervised learning part, similar concern is raised when the pattern clustering result is used for any 
conservation action. For example, some conservation biology studies species interaction and how that is 
important in conservation. Conditions and simplified measures should be stated before diving into any 
conservation strategies. 
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Yangkang Chen contributed the draft of the background, all analysis, visualizations, and results related to 
supervised learning (except for the baseline models) and ethical consideration. 
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Appendix 
 
Supplementary Table 1.  Feature importance 

Feature mean_by_permutation std_by_permutation mean_by_model_output 

DOY 0.03302 0.00132 0.01226 

elevation_mean 0.00805 0.00036 0.02481 

duration_minutes 0.00705 0.00060 0.01539 

bio4 0.00669 0.00023 0.04408 

slope_mean 0.00438 0.00030 0.01844 

bio7 0.00430 0.00013 0.02880 

bio19 0.00351 0.00052 0.02170 

bio2 0.00337 0.00012 0.02519 

bio17 0.00312 0.00037 0.02058 

tmin 0.00273 0.00021 0.01731 

bio11 0.00268 0.00026 0.03342 

bio6 0.00265 0.00020 0.02876 

bio8 0.00242 0.00021 0.02235 

prec 0.00239 0.00015 0.01790 

bio3 0.00227 0.00038 0.02197 

bio9 0.00223 0.00021 0.01761 

bio18 0.00222 0.00021 0.02284 

slope_std 0.00219 0.00034 0.01602 

bio12 0.00219 0.00020 0.02064 

eastness_mean 0.00194 0.00025 0.01577 

bio5 0.00192 0.00029 0.02021 

northness_std 0.00191 0.00025 0.01633 

eastness_std 0.00186 0.00028 0.01617 

bio1 0.00177 0.00014 0.02066 

bio10 0.00173 0.00020 0.01839 

bio15 0.00167 0.00024 0.01673 
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bio14 0.00141 0.00010 0.01772 

tmax 0.00123 0.00013 0.01707 

northness_mean 0.00119 0.00022 0.01514 

bio13 0.00102 0.00015 0.01543 

elevation_std 0.00085 0.00028 0.01614 

bio16 0.00080 0.00022 0.01214 

Traveling 0.00058 0.00008 0.01471 

Stationary 0.00047 0.00021 0.01191 

urban_and_built_up_lands 0.00045 0.00008 0.00961 

open_shrublands 0.00033 0.00003 0.00611 

evergreen_needleleaf_forests
_ed 

0.00030 0.00004 0.00596 

woody_savannas_lpi 0.00030 0.00005 0.00997 

mixed_forests 0.00030 0.00009 0.01161 

deciduous_broadleaf_forests 0.00029 0.00004 0.00833 

urban_and_built_up_lands_e
d 

0.00027 0.00004 0.00613 

woody_savannas 0.00026 0.00006 0.01360 

grasslands 0.00022 0.00014 0.01335 

grasslands_lpi 0.00022 0.00005 0.00810 

savannas 0.00020 0.00014 0.01131 

permanent_wetlands 0.00019 0.00010 0.01390 

mixed_forests_lpi 0.00018 0.00004 0.00790 

water_bodies 0.00016 0.00010 0.01232 

evergreen_needleleaf_forests 0.00014 0.00008 0.01010 

open_shrublands_ed 0.00013 0.00003 0.00185 

cropland_or_natural_vegetat
ion_mosaics_ed 

0.00012 0.00002 0.00328 

evergreen_broadleaf_forests
_ed 

0.00010 0.00004 0.00155 

week 0.00010 0.00001 0.00094 
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woody_savannas_ed 0.00008 0.00010 0.01029 

urban_and_built_up_lands_l
pi 

0.00006 0.00004 0.00530 

evergreen_broadleaf_forests 0.00005 0.00004 0.00281 

savannas_lpi 0.00005 0.00009 0.00836 

permanent_wetlands_lpi 0.00005 0.00007 0.00548 

entropy 0.00004 0.00022 0.01190 

mixed_forests_ed 0.00004 0.00006 0.00894 

deciduous_broadleaf_forests
_ed 

0.00004 0.00005 0.00484 

croplands_ed 0.00003 0.00004 0.00584 

croplands 0.00002 0.00011 0.00846 

grasslands_ed 0.00001 0.00011 0.00926 

cropland_or_natural_vegetat
ion_mosaics 

0.00001 0.00003 0.00552 

evergreen_broadleaf_forests
_lpi 

0.00001 0.00002 0.00141 

closed_shrublands_lpi 0.00000 0.00000 0.00041 

savannas_pd 0.00000 0.00000 0.00000 

open_shrublands_pd 0.00000 0.00000 0.00000 

croplands_pd 0.00000 0.00000 0.00000 

permanent_wetlands_pd 0.00000 0.00000 0.00000 

deciduous_needleleaf_forest
s_pd 

0.00000 0.00000 0.00000 

obsvr_species_count 0.00000 0.00000 0.01316 

time_observation_started_mi
nute_of_day 

0.00000 0.00000 0.01412 

cropland_or_natural_vegetat
ion_mosaics_pd 

0.00000 0.00000 0.00000 

urban_and_built_up_lands_p
d 

0.00000 0.00000 0.00000 

water_bodies_pd 0.00000 0.00000 0.00000 

closed_shrublands_pd 0.00000 0.00000 0.00000 
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woody_savannas_pd 0.00000 0.00000 0.00000 

deciduous_needleleaf_forest
s_lpi 

0.00000 0.00000 0.00000 

open_shrublands_lpi 0.00000 0.00000 0.00039 

month 0.00000 0.00000 0.00000 

grasslands_pd 0.00000 0.00000 0.00000 

deciduous_needleleaf_forest
s_ed 

0.00000 0.00000 0.00000 

evergreen_broadleaf_forests
_pd 

0.00000 0.00000 0.00000 

deciduous_needleleaf_forest
s 

0.00000 0.00000 0.00018 

year 0.00000 0.00000 0.00000 

evergreen_needleleaf_forests
_pd 

0.00000 0.00000 0.00000 

non_vegetated_lands_pd 0.00000 0.00000 0.00000 

deciduous_broadleaf_forests
_pd 

0.00000 0.00000 0.00000 

mixed_forests_pd 0.00000 0.00000 0.00000 

Area 0.00000 0.00001 0.00100 

closed_shrublands_ed 0.00000 0.00000 0.00045 

non_vegetated_lands_lpi 0.00000 0.00001 0.00107 

cropland_or_natural_vegetat
ion_mosaics_lpi 

-0.00001 0.00004 0.00364 

permanent_wetlands_ed -0.00001 0.00004 0.00561 

deciduous_broadleaf_forests
_lpi 

-0.00001 0.00003 0.00475 

non_vegetated_lands_ed -0.00001 0.00002 0.00093 

closed_shrublands -0.00002 0.00002 0.00171 

water_bodies_ed -0.00002 0.00005 0.00556 

water_bodies_lpi -0.00002 0.00001 0.00345 

non_vegetated_lands -0.00002 0.00001 0.00435 

croplands_lpi -0.00003 0.00006 0.00556 
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evergreen_needleleaf_forests
_lpi 

-0.00004 0.00008 0.00629 

savannas_ed -0.00010 0.00004 0.00847 

 
 
 
 
Supplementary Table 2. Failure Analysis (top 20 features) 

variable wrong_pred_
mean 

wrong_pred
_std 

right_pred_
mean 

right_pred
_std 

t p wrong_minus_
right 

bio3 31.1417 11.4271 47.5257 24.0638 -
92.710
1 

0.00E+
00 

-16.3840 

bio11 -0.1381 7.7520 9.1306 12.0095 -
102.51
91 

0.00E+
00 

-9.2688 

slope_mean 2.0819 3.0772 3.5263 5.0595 -
38.149
1 

0.00E+
00 

-1.4444 

bio9 7.0308 12.3219 13.2751 11.7741 -
65.083
3 

0.00E+
00 

-6.2443 

bio8 11.7343 8.8659 16.2740 9.7189 -
59.022
8 

0.00E+
00 

-4.5397 

bio7 34.6039 11.5767 23.1526 13.3608 109.32
35 

0.00E+
00 

11.4513 

tmin 5.6592 8.9814 10.1831 9.5991 -
59.259
2 

0.00E+
00 

-4.5239 

bio18 218.9118 161.3034 287.4842 231.3290 -
39.033
8 

0.00E+
00 

-68.5724 

bio4 800.8296 314.5152 443.7489 381.6154 120.36
09 

0.00E+
00 

357.0807 

bio6 -7.5834 8.5316 3.0836 12.7044 -
111.05
09 

0.00E+
00 

-10.6670 

bio12 888.5442 549.9419 1121.6829 856.7325 -
36.168
6 

2.17E-
284 

-233.1388 
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bio2 11.0361 3.9753 9.9140 4.0402 34.559
5 

5.37E-
260 

1.1221 

duration_min
utes 

64.3628 78.3682 92.9012 114.0323 -
33.012
2 

1.47E-
237 

-28.5384 

slope_std 0.2960 0.4790 0.4031 0.5578 -
24.526
8 

2.10E-
132 

-0.1071 

prec 73.4752 59.6332 90.3304 97.7459 -
23.035
6 

4.50E-
117 

-16.8552 

elevation_me
an 

462.8242 604.8264 553.8674 787.3542 -
15.033
6 

5.11E-
51 

-91.0432 

bio19 207.7454 164.3089 234.9254 257.4110 -
14.042
3 

9.58E-
45 

-27.1800 

eastness_mea
n 

0.0196 0.1601 0.0045 0.1701 11.134
8 

8.87E-
29 

0.0151 

bio17 105.7573 95.4730 100.7385 110.5010 5.7963 6.80E-
09 

5.0189 

DOY 170.5579 95.4176 167.0156 99.2696 4.4624 8.12E-
06 

3.5423 

 
 
 
 
Supplementary Table 3. Sensitivity & learning curve analysis 

training_size ensemble_fold recall precision average_precision roc_auc cohen_kappa f1 

38983 

1 0.8264 0.1702 0.1507 0.7892 0.2059 0.2822 

2 0.8577 0.1680 0.1520 0.8029 0.2066 0.2809 

3 0.8702 0.1610 0.1472 0.8033 0.1973 0.2717 

4 0.8673 0.1643 0.1498 0.8060 0.2030 0.2763 

5 0.8574 0.1633 0.1478 0.8011 0.2006 0.2744 

6 0.8714 0.1627 0.1488 0.8058 0.2004 0.2742 

7 0.8714 0.1652 0.1511 0.8078 0.2043 0.2778 

8 0.8714 0.1640 0.1500 0.8066 0.2023 0.2761 

9 0.8855 0.1645 0.1519 0.8120 0.2036 0.2774 



Bird migration project – Chen - Lawrence - 20 
  

10 0.8793 0.1645 0.1513 0.8099 0.2035 0.2772 

77967 
 

1 0.8506 0.1921 0.1724 0.8106 0.2386 0.3135 

2 0.8773 0.1916 0.1753 0.8235 0.2416 0.3145 

3 0.8864 0.1887 0.1738 0.8267 0.2388 0.3111 

4 0.8866 0.1877 0.1730 0.8260 0.2373 0.3099 

5 0.8892 0.1905 0.1758 0.8291 0.2419 0.3138 

6 0.9016 0.1898 0.1768 0.8331 0.2413 0.3136 

7 0.8910 0.1899 0.1754 0.8300 0.2414 0.3131 

8 0.8969 0.1912 0.1774 0.8332 0.2438 0.3153 

9 0.8918 0.1895 0.1752 0.8298 0.2407 0.3126 

10 0.8977 0.1893 0.1758 0.8318 0.2407 0.3127 

116950 
 

1 0.8498 0.2011 0.1797 0.8208 0.2553 0.3253 

2 0.8885 0.1930 0.1777 0.8341 0.2479 0.3171 

3 0.9020 0.1950 0.1814 0.8407 0.2519 0.3207 

4 0.9033 0.1936 0.1802 0.8407 0.2500 0.3188 

5 0.9029 0.1937 0.1803 0.8405 0.2502 0.3190 

6 0.9096 0.1908 0.1785 0.8414 0.2462 0.3154 

7 0.9085 0.1926 0.1801 0.8425 0.2492 0.3178 

8 0.9065 0.1930 0.1801 0.8420 0.2497 0.3182 

9 0.9150 0.1929 0.1812 0.8451 0.2499 0.3186 

10 0.9164 0.1936 0.1821 0.8462 0.2511 0.3197 

155933 
 

1 0.8659 0.2212 0.1996 0.8355 0.2838 0.3524 

2 0.8996 0.2159 0.2001 0.8485 0.2804 0.3482 

3 0.9138 0.2129 0.1996 0.8525 0.2771 0.3453 

4 0.9167 0.2138 0.2009 0.8546 0.2789 0.3468 

5 0.9190 0.2118 0.1994 0.8543 0.2761 0.3443 

6 0.9241 0.2129 0.2011 0.8569 0.2780 0.3461 

7 0.9129 0.2117 0.1983 0.8517 0.2754 0.3437 

8 0.9158 0.2148 0.2016 0.8548 0.2804 0.3480 
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9 0.9214 0.2123 0.2002 0.8554 0.2769 0.3451 

10 0.9180 0.2123 0.1996 0.8540 0.2766 0.3448 

194916 
 

1 0.8791 0.2276 0.2073 0.8449 0.2947 0.3616 

2 0.9055 0.2262 0.2103 0.8561 0.2958 0.3619 

3 0.9145 0.2198 0.2061 0.8561 0.2870 0.3545 

4 0.9163 0.2242 0.2104 0.8595 0.2938 0.3603 

5 0.9195 0.2237 0.2104 0.8605 0.2932 0.3598 

6 0.9204 0.2221 0.2091 0.8600 0.2910 0.3578 

7 0.9190 0.2241 0.2107 0.8608 0.2940 0.3604 

8 0.9220 0.2234 0.2106 0.8616 0.2932 0.3597 

9 0.9241 0.2229 0.2104 0.8621 0.2926 0.3591 

10 0.9222 0.2241 0.2112 0.8621 0.2942 0.3605 

233900 
 

1 0.8824 0.2345 0.2139 0.8495 0.3047 0.3705 

2 0.9105 0.2333 0.2177 0.8615 0.3063 0.3714 

3 0.9224 0.2304 0.2171 0.8648 0.3030 0.3687 

4 0.9207 0.2309 0.2172 0.8645 0.3036 0.3692 

5 0.9251 0.2329 0.2199 0.8671 0.3068 0.3721 

6 0.9258 0.2317 0.2189 0.8668 0.3052 0.3707 

7 0.9219 0.2321 0.2186 0.8654 0.3054 0.3708 

8 0.9285 0.2323 0.2199 0.8682 0.3063 0.3717 

9 0.9258 0.2321 0.2192 0.8669 0.3056 0.3711 

10 0.9274 0.2317 0.2191 0.8674 0.3052 0.3707 

272884 
 

1 0.8867 0.2422 0.2215 0.8550 0.3161 0.3804 

2 0.9097 0.2396 0.2233 0.8641 0.3152 0.3793 

3 0.9264 0.2343 0.2214 0.8683 0.3089 0.3740 

4 0.9257 0.2388 0.2254 0.8706 0.3156 0.3796 

5 0.9251 0.2375 0.2241 0.8697 0.3137 0.3780 

6 0.9312 0.2358 0.2236 0.8713 0.3117 0.3763 

7 0.9283 0.2374 0.2246 0.8710 0.3139 0.3781 
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8 0.9291 0.2377 0.2251 0.8715 0.3144 0.3786 

9 0.9330 0.2357 0.2239 0.8720 0.3118 0.3764 

10 0.9308 0.2375 0.2252 0.8721 0.3142 0.3785 

311867 

1 0.9005 0.2403 0.2222 0.8627 0.3169 0.3794 

2 0.9240 0.2340 0.2206 0.8707 0.3108 0.3735 

3 0.9319 0.2303 0.2184 0.8722 0.3061 0.3693 

4 0.9304 0.2356 0.2231 0.8743 0.3138 0.3760 

5 0.9327 0.2332 0.2213 0.8740 0.3105 0.3731 

6 0.9335 0.2325 0.2208 0.8740 0.3094 0.3722 

7 0.9346 0.2341 0.2225 0.8752 0.3118 0.3744 

8 0.9346 0.2330 0.2215 0.8746 0.3103 0.3730 

9 0.9357 0.2323 0.2211 0.8747 0.3094 0.3723 

10 0.9354 0.2335 0.2221 0.8753 0.3111 0.3738 

350851 
 

1 0.9044 0.2491 0.2309 0.8666 0.3283 0.3906 

2 0.9292 0.2485 0.2350 0.8775 0.3304 0.3921 

3 0.9365 0.2424 0.2307 0.8779 0.3226 0.3852 

4 0.9370 0.2484 0.2364 0.8810 0.3312 0.3927 

5 0.9385 0.2476 0.2359 0.8813 0.3303 0.3918 

6 0.9402 0.2412 0.2303 0.8790 0.3212 0.3839 

7 0.9409 0.2454 0.2343 0.8814 0.3274 0.3893 

8 0.9422 0.2444 0.2336 0.8814 0.3260 0.3881 

9 0.9409 0.2441 0.2331 0.8809 0.3256 0.3877 

10 0.9381 0.2452 0.2336 0.8803 0.3270 0.3888 

389834 
 

1 0.9056 0.2542 0.2357 0.8704 0.3364 0.3969 

2 0.9308 0.2493 0.2360 0.8802 0.3330 0.3932 

3 0.9370 0.2434 0.2317 0.8802 0.3252 0.3865 

4 0.9360 0.2463 0.2342 0.8813 0.3293 0.3900 

5 0.9394 0.2454 0.2340 0.8823 0.3284 0.3891 

6 0.9443 0.2434 0.2330 0.8834 0.3259 0.3870 



Bird migration project – Chen - Lawrence - 23 
  

7 0.9440 0.2457 0.2351 0.8844 0.3292 0.3899 

8 0.9436 0.2462 0.2355 0.8844 0.3298 0.3905 

9 0.9451 0.2447 0.2344 0.8843 0.3279 0.3887 

10 0.9447 0.2454 0.2349 0.8845 0.3288 0.3895 

 
 
 
 
 
Supplementary Table 4. Complete feature list 
 

 duration_minutes 

 protocol_type 

 effort_distance_km 

 number_observers 

 time_observation_started 

 observation_date 

 country 

 obsvr_species_count 

 elevation_mean 

 slope_mean 

 eastness_mean 

 northness_mean 

 elevation_std 

 slope_std 

 eastness_std 

 northness_std 

 prec 

 tmax 

 tmin 

 bio1 

 bio2 

 bio3 

 bio4 

 bio5 

 bio6 

 bio7 

 bio8 

 bio9 

 bio10 

 bio11 

 bio12 

 bio13 

 bio14 

 bio15 

 bio16 

 bio17 

 bio18 

 bio19 
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 closed_shrublands 

 closed_shrublands_ed 

 closed_shrublands_lpi 

 closed_shrublands_pd 

 cropland_or_natural_vegetation_mosaics 

 cropland_or_natural_vegetation_mosaics_ed 

 cropland_or_natural_vegetation_mosaics_lpi 

 cropland_or_natural_vegetation_mosaics_pd 

 croplands 

 croplands_ed 

 croplands_lpi 

 croplands_pd 

 deciduous_broadleaf_forests 

 deciduous_broadleaf_forests_ed 

 deciduous_broadleaf_forests_lpi 

 deciduous_broadleaf_forests_pd 

 deciduous_needleleaf_forests 

 deciduous_needleleaf_forests_ed 

 deciduous_needleleaf_forests_lpi 

 deciduous_needleleaf_forests_pd 

 evergreen_broadleaf_forests 

 evergreen_broadleaf_forests_ed 

 evergreen_broadleaf_forests_lpi 

 evergreen_broadleaf_forests_pd 

 evergreen_needleleaf_forests 

 evergreen_needleleaf_forests_ed 

 evergreen_needleleaf_forests_lpi 

 evergreen_needleleaf_forests_pd 

 grasslands 

 grasslands_ed 

 grasslands_lpi 

 grasslands_pd 

 mixed_forests 

 mixed_forests_ed 

 mixed_forests_lpi 

 mixed_forests_pd 

 non_vegetated_lands 

 non_vegetated_lands_ed 

 non_vegetated_lands_lpi 

 non_vegetated_lands_pd 

 open_shrublands 

 open_shrublands_ed 

 open_shrublands_lpi 

 open_shrublands_pd 

 permanent_wetlands 

 permanent_wetlands_ed 

 permanent_wetlands_lpi 

 permanent_wetlands_pd 

 savannas 

 savannas_ed 

 savannas_lpi 

 savannas_pd 



Bird migration project – Chen - Lawrence - 3 
  

 urban_and_built_up_lands 

 urban_and_built_up_lands_ed 

 urban_and_built_up_lands_lpi 

 urban_and_built_up_lands_pd 

 water_bodies 

 water_bodies_ed 

 water_bodies_lpi 

 water_bodies_pd 

 woody_savannas 

 woody_savannas_ed 

 woody_savannas_lpi 

 woody_savannas_pd 

 entropy 

 doy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


